转载:http://drmingdrmer.github.io/tech/programming/2017/05/06/python-mem.html#pyrasite-%E8%BF%9E%E6%8E%A5%E8%BF%9B%E5%85%A5python%E7%A8%8B%E5%BA%8F
表现
运行环境:
# uname -aLinux ** 3.10.0-327.el7.x86_64 #1 SMP Thu Nov 19 22:10:57 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux# python2 --versionPython 2.7.5# cat /etc/*-release CentOS Linux release 7.2.1511 (Core)
python程序在长时间(较大负载)运行一段时间后, python 进程的系统占用内存持续升高:
# ps aux | grep python2USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMANDroot 124910 10.2 0.8 5232084 290952 ? Sl Mar17 220:37 python2 offline.py restart# ~~~~~~# 290M 内存占用
这里的python进程在经历大量请求处理过程中, 内存持续升高, 但最终负载压力下降之后, 内存个并没有下降.
解决方法
为了节省读者时间, 这里先给出结论, 后面再记录详细的排查步骤.
我们分几个步骤逐步定位到问题所在:
- 首先确定当时程序在做什么, 是否有异常行为.
- 排除行为异常之后, 查看python的内存使用情况, 是否所有该回收的对象都回收了.
- 排除垃圾回收等python内部的内存泄漏问题后, 定位到时libc的malloc实现的问题.
而最后的解决方法也很简单, 直接替换malloc模块为tcmalloc:
LD_PRELOAD="/usr/lib64/libtcmalloc.so" python x.py
定位问题过程
gdb-python: 搞清楚python程序在做什么
首先要确定python在做什么, 是不是有正常的大内存消耗任务在运行, 死锁等异常行为.
这方面可以用gdb来帮忙, 从gdb-7开始, gdb支持用python来实现gdb的扩展. 我们可以像调试c程序那样, 用gdb对python程序检查线程, 调用栈等.
而且可以将python代码和内部的c代码的调用栈同时打印出来.
这样对不确定是python代码问题还是其底层c代码的问题的时候, 很有帮助.
以下步骤的详细信息可以参考 .
准备gdb
首先安装python的debuginfo:
# debuginfo-install python-2.7.5-39.el7_2.x86_64
如果缺少debuginfo, 运行后面的步骤gdb会提示blabla, 按照提示安装完继续就好:
Missing separate debuginfos, use: debuginfo-install python-2.7.5-39.el7_2.x86_64
接入gdb
然后我们可以直接用gdb attach到1个python进程, 来查看它的运行状态:
# gdb python 11122
attach 之后进入了gdb, 能做的事情就多了. 几个基本的检查步骤:
查看线程
(gdb) info threads Id Target Id Frame 206 Thread 0x7febdbfe3700 (LWP 124916) "python2" 0x00007febe9b75413 in select () at ../sysdeps/unix/syscall-template.S:81 205 Thread 0x7febdb7e2700 (LWP 124917) "python2" 0x00007febe9b75413 in select () at ../sysdeps/unix/syscall-template.S:81 204 Thread 0x7febdafe1700 (LWP 124918) "python2" 0x00007febe9b75413 in select () at ../sysdeps/unix/syscall-template.S:81 203 Thread 0x7febda7e0700 (LWP 124919) "python2" 0x00007febe9b7369d in poll () at ../sysdeps/unix/syscall-template.S:81
一般加锁死锁差不多可以在这里看到, 会有线程卡在xx_wait之类的函数上.
之前用这个方法定位了1个python-logging模块引起的, 在多线程的进程中运行fork, 导致logging的锁被锁住后fork到新的进程, 但解锁线程没有fork到新进程而造成的死锁问题.
查看调用栈
如果发现某个线程有问题, 切换到那个线程上, 查看调用栈确定具体的执行步骤, 使用bt
命令:
(gdb) bt#16 0x00007febea8500bd in PyEval_EvalCodeEx (co= , globals= , locals=locals@entry=0x0, args= , argcount=argcount@entry=1, kws=0x38aa668, kwcount=2, defs=0x3282a88, defcount=2, closure=closure@entry=0x0) at /usr/src/debug/Python-2.7.5/Python/ceval.c:3330 ... #19 PyEval_EvalFrameEx ( f=f@entry=Frame 0x38aa4d0, for file t.py, line 647, in run (part_num=2, consumer=<...
bt
命令不仅可以看到c的调用栈, 还会显示出python源码的调用栈, 想上面frame-16是c的, frame-19显示出在python的源代码对应哪1行.
如果只查看python的代码的调用栈, 使用py-bt
命令:
(gdb) py-bt#1 #3 Frame 0x3952450, for file /usr/lib64/python2.7/site-packages/twisted/internet/epollreactor.py, line 379, in doPoll (self=<... l = self._poller.poll(timeout, len(self._selectables)) #7 Frame 0x39502a0, for file /usr/lib64/python2.7/site-packages/twisted/internet/base.py, line 1204, in mainLoop (self=<...
py-bt
显示出python源码的调用栈, 调用参数, 以及所在行的代码.
coredump
如果要进行比较长时间的跟踪, 最好将python程序的进程信息全部coredump出来, 之后对core文件进行分析, 避免影响正在运行的程序.
(gdb) generate-core-file
这条命令将当前gdb attach的程序dump到它的运行目录, 名字为core.<pid>
, 然后再用gdb 加载这个core文件, 进行打印堆栈, 查看变量等分析, 无需attach到正在运行的程序:
# gdb python core.
其他命令
其他命令可以在gdb输入py<TAB><TAB>
看到, 和gdb的命令对应, 例如:
(gdb) pypy-bt py-list py-print pythonpy-down py-locals py-up python-interactive
py-up
,py-down
可以用来移动到python调用站的上一个或下一个frame.py-locals
用来打印局部变量
等等等等. gdb里也可以用help
命令查看帮助:
(gdb) help py-printLook up the given python variable name, and print it
在这次追踪过程中, 用gdb-python排除了程序逻辑问题. 然后继续追踪内存泄漏问题:
pyrasite: 连接进入python程序
pyrasite 是1个可以直接连上一个正在运行的python程序, 打开一个类似ipython的交互终端来运行命令来检查程序状态.
这给我们的调试提供了非常大的方便. 简直神器.
安装:
# pip install pyrasite...# pip show pyrasiteName: pyrasiteVersion: 2.0Summary: Inject code into a running Python processHome-page: http://pyrasite.comAuthor: Luke Macken...
连接到有问题的程序上, 开始收集信息:
pyrasite-shell >>>
接下来就可以在<pid>
的进程里调用任意的python代码, 来查看进程的状态.
下面是几个小公举(特么的输入法我是说工具..)可以用来在进程内查看内存状态的:
psutil 查看python进程状态
pip install psutil
首先看下python进程占用的系统内存RSS:
pyrasite-shell 11122>>> import psutil, os>>> psutil.Process(os.getpid()).memory_info().rss 29095232
基本和ps命令显示的结果一致
rss the real memory (resident set) size of the process (in 1024 byte units).
guppy 取得内存使用的各种对象占用情况
guppy 可以用来打印出各种对象各占用多少空间, 如果python进程中有没有释放的对象, 造成内存占用升高, 通过guppy可以查看出来:
同样, 以下步骤是在通过pyrasite-shell, attach到目标进程后操作的.
# pip install guppyfrom guppy import hpy h = hpy() h.heap() # Partition of a set of 48477 objects. Total size = 3265516 bytes. # Index Count % Size % Cumulative % Kind (class / dict of class) # 0 25773 53 1612820 49 1612820 49 str # 1 11699 24 483960 15 2096780 64 tuple # 2 174 0 241584 7 2338364 72 dict of module # 3 3478 7 222592 7 2560956 78 types.CodeType # 4 3296 7 184576 6 2745532 84 function # 5 401 1 175112 5 2920644 89 dict of class # 6 108 0 81888 3 3002532 92 dict (no owner) # 7 114 0 79632 2 3082164 94 dict of type # 8 117 0 51336 2 3133500 96 type # 9 667 1 24012 1 3157512 97 __builtin__.wrapper_descriptor # <76 more rows. Type e.g. '_.more' to view.> h.iso(1,[],{}) # Partition of a set of 3 objects. Total size = 176 bytes. # Index Count % Size % Cumulative % Kind (class / dict of class) # 0 1 33 136 77 136 77 dict (no owner) # 1 1 33 28 16 164 93 list # 2 1 33 12 7 176 100 int
通过以上步骤, 可以看出并没有很多python对象占用更大内存.
无法回收的对象
python本身是有垃圾回收的, 但python程序中有种情况是对象无法被垃圾回收掉(uncollectable object), 满足2个条件:
- 循环引用
- 循环引用的链上某个对象定义了
__del__
方法.
官方的说法是, 循环引用的一组对象被gc模块识别为可回收的, 但需要先调用每个对象上的__del__
方法, 才能回收. 但用户自定义了__del__
的对象, gc系统不知道应该先调用环上的哪个__del__
. 因此无法回收这类对象.
不能回收的python对象会持续占据内存, 当问题查到这里时我们怀疑有不能被回收的对象导致内存持续升高.
于是我们尝试列出所有不能回收的对象.
后来确定不是这种问题引起的内存不释放. 不能回收任然可以通过
gc.get_objects()
列出来, 并会在gc.collect()
调用后被加入到gc.garbage
的list里. 但我们没有发现这类对象的存在.
查找uncollectable的对象:
pyrasite-shell 11122>>> import gc>>> gc.collect() # first run gc, find out uncollectable object and put them in gc.garbage # output number of object collected >>> gc.garbage # print all uncollectable objects [] # empty
如果在上面最后一步打印出了任何不能回收的对象, 则需要进一步查找循环引用链上在哪个对象上包含__del__
方法.
下面是1个例子来演示如何生成不能回收的对象:
不可回收对象的例子 ?
from __future__ import print_functionimport gc ''' This snippet shows how to create a uncollectible object: It is an object in a cycle reference chain, in which there is an object with __del__ defined. The simpliest is an object that refers to itself and with a __del__ defined. > python uncollectible.py ======= collectible object ======= *** init, nr of referrers: 4 garbage: [] created: collectible: <__main__.One object at 0x102c01090> nr of referrers: 5 delete: *** __del__ called *** after gc, nr of referrers: 4 garbage: [] ======= uncollectible object ======= *** init, nr of referrers: 4 garbage: [] created: uncollectible: <__main__.One object at 0x102c01110> nr of referrers: 5 delete: *** after gc, nr of referrers: 5 garbage: [<__main__.One object at 0x102c01110>] ''' def dd(*msg): for m in msg: print(m, end='') print() class One(object): def __init__(self, collectible): if collectible: self.typ = 'collectible' else: self.typ = 'uncollectible' # Make a reference to it self, to form a reference cycle. # A reference cycle with __del__, makes it uncollectible. self.me = self def __del__(self): dd('*** __del__ called') def test_it(collectible): dd() dd('======= ', ('collectible' if collectible else 'uncollectible'), ' object =======') dd() gc.collect() dd('*** init, nr of referrers: ', len(gc.get_referrers(One))) dd(' garbage: ', gc.garbage) one = One(collectible) dd(' created: ', one.typ, ': ', one) dd(' nr of referrers: ', len(gc.get_referrers(One))) dd(' delete:') del one gc.collect() dd('*** after gc, nr of referrers: ', len(gc.get_referrers(One))) dd(' garbage: ', gc.garbage) if __name__ == "__main__": test_it(collectible=True) test_it(collectible=False)
上面这段代码创建了2个对象, 1个可以回收, 1个不能回收, 他们2个都定义了__del__
方法, 唯一区别就是是否引用了自己(从而构成了引用环).
如果在这个步骤发现了循环引用, 就要进一步查处哪些引用关系造成了循环引用, 进而破坏掉循环引用, 让对象变成可以回收的.
objgraph 查找循环引用
# pip install objgraphpyrasite-shell 11122>>> import objgraph>>> objgraph.show_refs([an_object], filename='sample-graph.png')
上面的例子中, 将在本地生成一个图片, 描述由可以由 an_object 引用到的关系图:
具体参考:
在这一步我们也没有找到不能回收的对象, 最后我们怀疑到时glibc的malloc的问题, 用tcmalloc替代glibc默认的malloc后问题得到修复.
Archive
- 20 Nov 2017
- 05 Aug 2017
- 06 May 2017
- 01 Feb 2017
- 01 Feb 2017
- 11 Nov 2015
- 28 Jul 2015
- 17 May 2015
- 17 Feb 2015
- 11 Feb 2015
- 24 Jul 2014
- 31 Jan 2014
- 31 Jan 2014